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Abstract
The value of the lattice parameter of fcc Al at low temperatures, a(T ), is shown
to be accurately determined by the Debye theory of lattice vibrations and first-
principles total energy band calculations. The Debye theory uses the well-
known generalization to direction-dependent elastic mode frequencies and is
further modified by introducing a parameter βz , which gives the fraction of the
full Debye zero-point energy that is possessed by the actual dispersive mode
frequencies. The calculation of a(T ) is simplified by minimizing the Gibbs free
energy of the vibrating lattice rather than the usual procedure of minimizing the
total energy at constant volume. The parameter βz is shown to affect the value of
a(T ), but comparison of a(T ) with experiment is not able to evaluate βz because
of the inherent inaccuracy of the band calculations (the GGA value is 0.7% high,
and the LSDA value is 1.2% low for a(T )). By using experimental values of
a(T ) and elastic constants ci j(T ), i j = 11, 12, 44 and modified Debye theory,
βz is evaluated as 0.48 without band calculations. From βz the rigid lattice of a
is shown to be 4.01 Å, midway between the GGA and LSDA values.

1. Introduction

This work shows that the Debye theory of lattice vibrations combined with first-principles
total-energy band calculations can accurately find the temperature dependence of the lattice
parameter a(T ) of fcc Al from 0 K to at least 300 K. Hence Debye theory is shown to be
an alternative procedure for calculating a(T ) at low temperatures that is simpler than the
computationally intensive complete phonon spectra usually used to compute thermal expansion
from first principles.

The Debye theory of lattice vibrations derives a one-parameter formula for the free energy
of lattice vibrations as a function of temperature F(θD, T ). The parameter θD depends just on
volume for cubic materials, but in the quasi-harmonic approximation it does not depend on T .
The original form of Debye theory [1] had three defects:
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(1) it assumed that the elastic waves that were used to describe the lattice vibration modes
were isotropic,

(2) it neglected dispersion of the actual lattice modes, which have frequencies that differ from
the frequencies of elastic waves as functions of wavenumber,

(3) it assumed that the zero-point energy (ZPE) was a sum of elastic wave contributions over
the entire phonon spectrum, thereby neglecting the fact that dispersion would change the
contributions of all the higher frequencies.

The first two defects were remedied for low-temperature applications in the 1930s and
1940s (for a review see [2]) by obtaining elastic wave velocities as functions of direction
from solutions of the elastic equations of motion. This generalized Debye theory thus made
the temperature dependence of F(θD, T ) accurate at sufficiently low temperatures and exact
approaching 0 K. Also, at temperatures sufficiently low that only elastic waves are excited, the
second defect, neglect of dispersion, could be ignored. However, the third defect, the wrong
estimate of the ZPE, is not remedied by using directionally correct elastic wave velocities at
low temperatures because all modes enter the ZPE, including dispersive ones.

In application of the Debye theory to the calculation of lattice dimensions, the ZPE is
important. This work attempts to remedy the third defect for low-temperature applications by
introducing a parameter βz that fractionally reduces the Debye values of the ZPE in F(θD, T ).
In the first part (sections 2 and 3) of the paper we find the equilibrium lattice dimension a(T ) of
fcc Al by minimizing with respect to structure the Gibbs free energy G at zero pressure obtained
by adding the modified Debye free energy of lattice vibration Fm(θD, T ) (modified by βz) to
the rigid-lattice band energy E(a). The resulting theoretical equilibrium lattice dimensions
can then be compared to measured lattice dimensions, which of course contain the vibrational
effects. But due to the inherent inaccuracy of the band energy calculation, we show that no
value of βz can be established.

The first part of the paper carries out the calculation based on first-principles band
calculations of the cubic elastic constants at particular a values, which give θD(a),
Fm(θD(a), T ) at these a values. This part of the paper establishes some important results:
that Debye theory gives a(T ) − a(0) accurately up to at least 300 K (necessary for the second
part of the paper which fits measured a(T ) between 100 and 200 K); that the limiting T 4

term for Fm(θD, T ) is not adequate to fit experiment; that the use of the Gibbs free energy at
zero pressure is simpler than the usual procedure of calculating the internal energy at constant
volume from complete phonon spectra at many volumes (to find the volume of zero pressure);
that the band calculation with the generalized-gradient approximation (GGA) gives high values
of a compared to experiment and the local-spin-density approximation (LSDA) gives low
values; hence, although βz affects the value of a, the inaccuracies are too large to permit
evaluation of βz .

In the second part of the paper we avoid the inherent inaccuracies of the GGA and LSDA
by using experimental values of a(T ) and ci j(T ), i j = 11, 12, 44 to find θD and Fm(θD, T );
Fm(θD, T ) is then fitted to the experimental change in a(T ) between 100 and 200 K to
determine βz and aR, the rigid-lattice value of a, which can be compared directly with the
results of rigid-lattice band calculations. The measured a(T ) and ci j(T ) also give a value of
a Grüneisen-type parameter γDG describing the volume dependence of the Debye parameter
θD, which in the quasi-harmonic approximation depends on volume but not on temperature.
The values of βz, γDG and aR do not require band calculations and their accuracy rests on
the accuracy of measured dimensions and elastic constants at several temperatures and on the
accuracy of generalized and modified Debye theory near 0 K.
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2. Procedures of band calculations

First-principles band calculations of fcc Al were performed using the full-potential augmented-
plane-wave plus local orbitals (APW + lo) method together with either the generalized-gradient
approximation (GGA) or the local-spin-density approximation (LSDA) as implemented in the
WIEN2k 05 package [3]. A plane-wave cutoff RMT Kmax = 7, RMT = 1.6 au, Gmax = 14,
mixer = 0.05 and 1000 k-points in the irreducible Brillouin zone were used in all the band
calculations. The k-space integration was done by the modified tetrahedron method. Tests with
larger basis sets and different Brillouin zone samplings yielded only very small changes in the
results. The convergence criterion on the energies is set at 1 × 10−3 mRyd (10−6 Ryd).

The band calculation program WIEN2k 05 is called by a minimum path program MNP [4]
which makes a series of jumps in structure based on the local slope and curvature of the Gibbs
free energy G = E + pV (at T = 0) at a point in structure space (whose coordinates are the
components of the unit cell lattice vectors in orthogonal coordinates). The calculation rapidly
approaches the structure at the minimum of G and simultaneously finds the Gibbs free energy,
the lattice structure and the elastic constants at rigid-lattice equilibrium at a given pressure p.

At given temperature T and pressure p the Gibbs free energy

G = Eelec + pV + F(θD, T ), (1)

where Eelec + pV is the rigid-lattice Gibbs free energy (Ryd/atom) from the MNP calculation,
V is the volume per atom; F(θD, T ) is the free energy of lattice vibrations (Ryd/atom), which
is given in generalized Debye theory by [5, pages 53, 213]

F(θD, T ) = 9

8
kBθD + 9kBθD

x4

∫ x

0
z2 ln

(
1 − e−z

)
dz, x ≡ θD

T
, (2)

where kB is Boltzmann’s constant and 9
8 kBθD is the full Debye zero-point energy (ZPE).

The first two terms of the expansion of F(θD, T ) as powers of T [5, page 213] are

F(θD, T ) ∼= 9

8
kBθD − π4

5

kBT 4

θ3
D

. (3)

To determine the temperature dependence of the equilibrium lattice constant a(T ) we
select three reference values of the lattice parameter a which bracket a(T ), the equilibrium
value of a at T . We then evaluate Eelec(a) + pV , θD(a) and F(θD, T ) at each reference value
of a using (2); hence we can evaluate G(a, T ) using (1) (here we only consider the zero-
pressure case). We evaluate θD(a) at the reference values of a using the elastic constants ci j(a)

(i j = 11, 12, 44) determined from (∂2G/∂εi∂ε j)/V . Fitting of the G values at the three
reference points at a given temperature T with a second-order polynomial and finding the a
that minimizes G(a, T ) gives the equilibrium lattice constant a(T ).

We make the calculated a(T ) depend on a factor βz in the ZPE by using a modified free
energy of vibration Fm(θD, T ) in (1), namely

Fm(θD, T ) = 9

8
βz kBθD + 9kBθD

x4

∫ x

0
z2 ln

(
1 − e−z

)
dz, x ≡ θD

T
. (4)

3. Results of band calculations

Table 1 lists the calculated values of the Debye temperature θD, the electronic energy Eelec and
the Gibbs free energy G(a, T ) = Eelec + Fm(θD, T ) (at p = 0) of fcc Al at the three reference
points a1, a2, a3. The modified free energy of lattice vibrations Fm(θD, T ) is calculated from (4)
using the GGA at T = 0, 50 and 100 K with both βz = 0 and 1 in each case. Fittings of the
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Figure 1. Temperature dependence of the equilibrium lattice constant of fcc Al. The solid diamonds
are the experimental data from [6]. The open and solid circles are calculated from (4) using the
GGA with βz = 0 and 1 respectively. The open and solid triangles are calculated from (4) using
the LSDA with βz = 0 and 1 respectively. The open squares are the linear combination of the GGA
and LSDA results with a(T ) = 0.57aGGA + 0.43aLSDA at βz = 1 to fit the experimental data. The
open diamonds are calculated from (3) using the GGA with βz = 1. The solid and dashed lines
interpolate between the data points.

Table 1. Debye temperature θD, electronic energy Eelec and Gibbs free energy G(a, T ) =
Eelec + Fm(θD, T ) (at p = 0) of fcc Al at the three reference points a1, a2, a3. The modified
free energy of lattice vibrations Fm(θD, T ) in G(a, T ) is calculated from (4) using the GGA with
βz = 1 and 0 respectively.

a1 = 4.046 197 Å a2 = 4.070 474 Å a3 = 4.094 751 Å

θD (deg) 433.91 409.13 385.23

Eelec (Ryd/atom) −485.638 978 −485.638 839 −485.638 519

G(T = 0 K) (Ryd/atom) β = 1 −485.635 887 −485.635 924 −485.635 774
β = 0 −485.638 978 −485.638 839 −485.638 519

G(T = 50 K) (Ryd/atom) β = 1 −485.635 896 −485.635 935 −485.635 788
β = 0 −485.638 987 −485.638 850 −485.638 533

G(T = 100 K) (Ryd/atom) β = 1 −485.636 011 −485.636 067 −485.635 938
β = 0 −485.639 102 −485.638 982 −485.638 683

values of the Gibbs free energies G(a, T ) at the three reference points with a second-order
polynomial give at the minimum of G the equilibrium lattice constants aGGA(T ) with βz = 0
and 1. The equilibrium lattice constants aLSDA(T ) with βz = 0 and 1 are found similarly.

Figure 1 shows the comparison of calculated a(T ) with the experimental result for fcc
Al. The solid diamonds are the experimental data from [6]. The open and solid circles are
calculated from (4) using the GGA with βz = 0 and 1 respectively. The open and solid triangles
are calculated from (4) using the LSDA with βz = 0 and 1 respectively. The open squares are
the linear combination of the GGA and LSDA results with a(T ) = 0.57 aGGA + 0.43 aLSDA

at βz = 1 to fit the experimental data. The open diamonds are calculated from (3) using the
GGA with βz = 1. At low temperatures (T � 50 K) the calculated a(T ) are the same from
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both (3) and (4). However, at T > 50 K the term π4

5
kBT 4

θ 3
D

in (3) increases with increasing T

much faster than the integral term in (4). As shown in figure 1 at T = 150 K the value of a(T )

calculated from (3) is much larger than that from (4) (the open diamond versus the solid circle).
Calculations of a(T ) from (3) at T > 150 K would require more reference points with larger
a.

4. Vibrational parameters evaluated without band calculations

Section 3 showed two features of Debye theory:

(1) Debye theory can describe the temperature dependence of the lattice parameter rather well
up to at least 300 K;

(2) Debye theory does not find the lattice parameter at 0 K accurately because of the inherent
inaccuracy of the band calculations, even when the full range of zero-point energy for
βz = 0 to 1 is considered.

To evaluate βz we need a procedure which does not require band calculations.
To evaluate βz we consider using the first feature of the Debye theory given above, namely

the accurate evaluation of the thermal expansion. We tried first a procedure which assumed
that θD had an exponential dependence on volume with one parameter, θD ∝ V −γDG ; γDG is
a Grüneisen-type parameter which we shall call the Debye–Grüneisen parameter. If θD(V0) is
known from measurement, where V0 is the volume at 0 K, then θD and Fm(θD, T ), the modified
(by factor βz) Helmholtz free energy of vibration, would be known as functions of V and T . We
expand E around a(0) (the lattice parameter at T = 0 including the ZPE effect) as a function
of a in terms of the known bulk modulus B0 and minimize the Gibbs free energy (at p = 0)
with respect to a at several T , where

G(a, T ) = E(a) + Fm(θD(a), T ). (5)

This procedure expresses the equilibrium a at T in terms of B0, γDG and βz . We tried to evaluate
βz and γDG by fitting a(T ). It proved possible to fit measured a(T ) values [6] at T = 50, 100
and 200 K with βz = 0–1 over narrow non-overlapping range of γDG (γDG = 2.30–2.39 at
50 K, 2.62–2.70 at 100 K and 2.99–3.20 at 200 K), but no unique values of βz and γDG would
fit even two values of T . Hence a single γDG parameter would not represent θD(V ) adequately.

To evaluate βz we then added to the measured a(T ) values the measured values of
c11(T ), c12(T ), c44(T ) for fcc Al [7]. The values of a(T ) and ci j(T ) give θD(T ). We now
use Debye theory to develop an equation containing βz for the thermal expansion between two
temperatures T1 and T2 at which we have the measured lattice parameter values a1, a2 and
values of θD. The numerical procedure is as follows. Results are in table 2.

At each T the equilibrium equation(
∂G(a, T )

∂a

)
T

= dE(a)

da
+

[
∂ Fm(θD(a), T )

∂a

]
T

= 0 (6)

relates dE/da to (∂ F/∂a)T . Then the difference in dE/da between T1 and T2 can be expressed
in two ways: (

dE

da

)
2

−
(

dE

da

)
1

= d2 E

da2
(a2 − a1) =

(
∂ F

∂a

)
1

−
(

∂ F

∂a

)
2

. (7)

In (7), d2 E/da2 is an average value over the range a1–a2 which can be expressed in terms of
the bulk modulus(

d2 E

da2

)
i

= 9

4
ai Bi + 2

ai

(
dE

da

)
i

, i = 1, 2 (8)
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Table 2. Parameter values for fcc Al at 100, 200 K and zero pressure leading to values of βz , γDG

and aR.

T (deg) 100 K 200 K
a (Å) [6] 4.034 195 4.040 980
c11 (Mbar) [7] 1.1333 1.1040
c12 (Mbar) [7] 0.6185 0.6130
c44 (Mbar) [7] 0.3104 0.2064
B (Mbar) 0.7901 0.7767
θD (deg) 426.87 417.62
dθD/dT (no dimension) −0.078 23 −0.102 23
da/dT (Bohr/deg) 0.4790 × 10−4 0.8305 × 10−4

dθD/da (deg/Bohr) −1.6332 × 103 −1.2309 × 103

γDG (no dimension) 5.14 3.97
(∂F/∂θD)T (Ryd/deg) 0.4132 × 10−5 0.7304 × 10−5

(∂F/∂a)T (Ryd/Bohr) 0.3571 × 10−2 0.4756 × 10−2

In (8) B is the bulk modulus V d2 E/dV 2 at a1 and a2 and the second term is needed in
transforming variables from V = a3/4 to a when dE/da �= 0.

To complete (7), we need the relations(
∂ F

∂a

)
T

=
(

∂ F

∂θD

)
T

dθD

da
, (9)

(
∂ F

∂θD

)
T

= kB

(
9

8
βz + J (x)

)
, x ≡ θD

T
, (10)

J (x) ≡ I (x) + x
dI (x)

dx
, (11)

I (x) ≡ 9

x4

∫ x

0
z2 ln

(
1 − e−z

)
dz. (12)

Putting (8)–(12) in (7) gives a linear equation for βz:

9

8
(a2 − a1)(a1 B1 + a2 B2) − a2

a1

(
∂ F

∂a

)
1

+ a1

a2

(
∂ F

∂a

)
2

= 0. (13)

Equation (13) with the use of (9)–(12) is now applied at T1 = 100 K and T2 = 200 K. The
five values of a(T ) given in [6], plotted in figure 2(a), are used to find the best-fit cubic, which
gives da/dT at T = 100 and 200 K (table 2). The measured c11(T ), c12(T ), c44(T ) values
in [7] and a(T ) values in [6] were used to find θD(T ) (figure 2(b)). The best-fit cubic to five
consecutive values of θD(T ) were then used to find dθD/dT at 100 and 200 K (table 2). Then

dθD

da
= dθD/dT

da/dT
(14)

was evaluated at 100 and 200 K (table 2). The a and θD values at low values of T (50 K and
below) varied too slowly to give accurate derivatives, but the variations were reasonable at 100
and 200 K. Then (∂ F/∂a)T was found from (9) and (10) at 100 and 200 K (table 2) using
interpolation in a large table of J (x), and inserted in (13) to find βz = 0.48. The bulk moduli
B1 and B2 were found from the measured c11 and c12 at 100 and 200 K (table 2).

From θD, dθD/da and a at 100 and 200 K, the Debye–Grüneisen parameter γDG can be
evaluated (table 2); it is defined by

γDG ≡ −∂ ln θD

∂ ln V
= − a

3θD

dθD

da
. (15)
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Figure 2. (a) Experimental lattice constant (solid circles, from [6]) and its best-fit cubic (solid
line) as a function of temperature. (b) Debye temperature θD(T ) (solid circles) calculated from the
measured c11(T ), c12(T ), c44(T ) [7] and a(T ) values [6] as a function of temperature. The solid
line interpolates between the data points.

Finally aR, the rigid-lattice value of a, can be estimated as the a value at which dE/da = 0,
where (

dE

da

)
R

=
(

dE

da

)
1

+ (aR − a1)

(
d2 E

da2

)
1

= 0. (16)

Then using (6) and (8)–(12) in (16) gives aR = 4.01 Å, which may be compared to the GGA
value of 4.05 Å and the LSDA value 3.98 Å (figure 1 at βz = 0, T = 0).

5. Discussion

Section 3 uses the Debye theory of lattice vibrations, generalized by direction-dependent elastic
waves and modified by a fractional factor βz in the ZPE combined with first-principles full-
potential total-energy band calculations. The combined theories are applied to calculation of
the equilibrium lattice parameter a(T ) of fcc Al as a function of temperature (only p = 0 is
considered).

The following features of this form of Debye theory are shown.

(1) The calculated a(T ) differs from measured values over the full range of βz for both the
GGA and the LSDA; hence βz cannot be evaluated. The GGA results are high by an
average 0.7% and the LSDA results are low by 1.2%. These results on the band theory
errors are similar to those found by Narasimhan and Gironcoli for thermal parameters of
Cu [8].

7
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(2) The calculated thermal expansion from 0 to 300 K fits the measured thermal expansion
rather well.

(3) The frequently quoted lowest-order term in the low-T expansion of F(V , T ), the T 4 term,
is of little value. It is a poor approximation where the thermal expansion is large enough
to be measured with good accuracy, and where the term applies a and θD vary too little to
give accurate derivatives.

The procedure used to find a(T ) is another application of the thermodynamic theorem that
the equilibrium structure is found at a given p and T by minimizing the Gibbs free energy
G = E + pV + F . By use of G at reference structures, which are not in general in equilibrium
states, the structure at the minimum can be found by fitting a smooth function to the G values
and finding the a of the minimum. In previous work [9] we have varied p at T = 0; here we
vary T at p = 0, but the procedure could be used at any p and T .

An alternative procedure finds the equilibrium for cubic materials (which have only one
structure parameter V or a) from p = −d(E + F)/dV , which is equivalent to dG/dV = 0.
In the alternative procedure E is evaluated as a function of V , F as function of V and T ,
and p(V , T ) is found by differentiating with respect to V . It is then necessary to solve
p(V , T ) = p0 to find V (T ) at p0. This procedure was used for the thermal expansion of Ag
by Xie et al [10], who found complete phonon spectra calculated at constant V as a function
of V , which gave F(V , T ) to high values of T . Here we fix p and T first, evaluate E and F
at a few reference values of V and interpolate G(V ) to find equilibrium at the minimum of G.
The process is repeated at each T (and p if wanted) to find a(T ). Over a range of T (and p)
the E values do not have to be recalculated, and θD in F(θD(V ), T ) also does not have to be
recalculated; only T and p are varied. The expansion in a(T ) as T increases is driven by the
decrease of θD due to the decrease of elastic constants as a increases (an anharmonic effect).
Decrease of θD decreases F and favours increase of a until the increase of strain energy as E(a)

increases balances the decrease in F .
We note some consequences of the calculations in section 4, which evaluated βz , the

fraction by which the ZPE in Debye theory should be reduced, and found to be about one
half for fcc Al. Note that use of the full Debye ZPE (at βz = 1) to take account of the ZPE
effect on transition pressure, such as is done in [11, figure 1] for the transition from fcc Al to
hcp Al, is an overestimate. Note that the value of βz was used to estimate that purely theoretical
quantity aR, the rigid-lattice value of a, which came out midway between the GGA and LSDA
estimates. The evaluations of aR directly from measurements provides a useful check on the
accuracy of band calculations. In the evaluation of βz from (13), values of the bulk moduli B1

at 100 K and B2 at 200 K were taken from measurements. These values of B1 and B2 given
by V (∂2G/∂V 2)T then included a contribution from V (∂2 F/∂V 2)T added to V d2 E/dV 2,
whereas (7) and (13) require just the contribution from E . However the F contribution to B
is only a few per cent of the contribution from E and can be neglected. In [12, page 6] the
contribution from F at 0 K, which is just the ZPE, is evaluated from complete phonon spectra
of fcc Al to be 1.8% of the total B .

The calculation of βz from complete phonon spectra has a complication because mode
frequencies are calculated at constant volume, whereas the experiment is at constant pressure.
To use complete phonon spectra at constant volume the total energy must be calculated at
enough volumes to find the volume and frequencies corresponding to the pressure of the
experiment (here zero); moreover, the calculation must be repeated at each temperature, since
the volume changes with temperature. The use of Debye theory avoids this complication
because the elastic constants that determine θD are at constant pressure.

8
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Finally, we note that the values of the Debye–Grüneisen parameter γDG, 5.1 at 100 K and
4.0 at 200 K, are larger than the values for the standard Grüneisen parameter, e.g., γG = 2.2 at
100 and 200 K for fcc Al [5, page 57]; in addition γDG varies strongly with T . The accuracy of
γDG depends directly on the accuracy of measured a(T ) and ci j(T ), and does not involve any
thermodynamic or electronic theory.
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